Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 172
Filtrar
1.
Int J Mol Sci ; 25(7)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38612413

RESUMO

Cancers reprogram macrophages (MΦs) to a tumor-growth-promoting TAM (tumor-associated MΦ) phenotype that is similar to the anti-inflammatory M2 phenotype. Poly(ADP-ribose) polymerase (PARP) enzymes regulate various aspects of MΦ biology, but their role in the development of TAM phenotype has not yet been investigated. Here, we show that the multispectral PARP inhibitor (PARPi) PJ34 and the PARP14 specific inhibitor MCD113 suppress the expression of M2 marker genes in IL-4-polarized primary murine MΦs, in THP-1 monocytic human MΦs, and in primary human monocyte-derived MΦs. MΦs isolated from PARP14 knockout mice showed a limited ability to differentiate to M2 cells. In a murine model of TAM polarization (4T1 breast carcinoma cell supernatant transfer to primary MΦs) and in a human TAM model (spheroids formed from JIMT-1 breast carcinoma cells and THP-1-MΦs), both PARPis and the PARP14 KO phenotype caused weaker TAM polarization. Increased JIMT-1 cell apoptosis in co-culture spheroids treated with PARPis suggested reduced functional TAM reprogramming. Protein profiling arrays identified lipocalin-2, macrophage migration inhibitory factor, and plasminogen activator inhibitor-1 as potential (ADP-ribosyl)ation-dependent mediators of TAM differentiation. Our data suggest that PARP14 inhibition might be a viable anticancer strategy with a potential to boost anticancer immune responses by reprogramming TAMs.


Assuntos
Neoplasias da Mama , Macrófagos Associados a Tumor , Animais , Feminino , Humanos , Camundongos , Diferenciação Celular , Macrófagos , Camundongos Knockout , Poli(ADP-Ribose) Polimerases , Tamoxifeno
2.
Elife ; 122024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38598284

RESUMO

Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47 mV in normal APs and of 14.5 mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.22 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.


Assuntos
Miócitos Cardíacos , Redes Neurais de Computação , Humanos , Potenciais de Ação , Simulação por Computador , Bioensaio
3.
Sci Rep ; 14(1): 7237, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538818

RESUMO

Recent experimental data shows that hesperetin, a citrus flavonoid, affects potassium channels and can prolong the QTc interval in humans. Therefore, in the present study we investigated the effects of hesperetin on various transmembrane ionic currents and on ventricular action potentials. Transmembrane current measurements and action potential recordings were performed by patch-clamp and the conventional microelectrode techniques in dog and rabbit ventricular preparations. At 10 µM concentration hesperetin did not, however, at 30 µM significantly decreased the amplitude of the IK1, Ito, IKr potassium currents. Hesperetin at 3-30 µM significantly and in a concentration-dependent manner reduced the amplitude of the IKs current. The drug significantly decreased the amplitudes of the INaL and ICaL currents at 30 µM. Hesperetin (10 and 30 µM) did not change the action potential duration in normal preparations, however, in preparations where the repolarization reserve had been previously attenuated by 100 nM dofetilide and 1 µg/ml veratrine, caused a moderate but significant prolongation of repolarization. These results suggest that hesperetin at close to relevant concentrations inhibits the IKs outward potassium current and thereby reduces repolarization reserve. This effect in certain specific situations may prolong the QT interval and consequently may enhance proarrhythmic risk.


Assuntos
Flavonoides , Hesperidina , Humanos , Coelhos , Cães , Animais , Flavonoides/farmacologia , Ventrículos do Coração , Hesperidina/farmacologia , Potenciais de Ação/fisiologia , Potássio/farmacologia
4.
Biomedicines ; 11(9)2023 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-37760824

RESUMO

The present study was designed to test the hypothesis that the selectivity of blocking the late Na+ current (INaL) over the peak Na+ current (INaP) is related to the fast offset kinetics of the Na+ channel inhibitor. Therefore, the effects of 1 µM GS967 (INaL inhibitor), 20 µM mexiletine (I/B antiarrhythmic) and 10 µM quinidine (I/A antiarrhythmic) on INaL and INaP were compared in canine ventricular myocardium. INaP was estimated as the maximum velocity of action potential upstroke (V+max). Equal amounts of INaL were dissected by the applied drug concentrations under APVC conditions. The inhibition of INaL by mexiletine and quinidine was comparable under a conventional voltage clamp, while both were smaller than the inhibitory effect of GS967. Under steady-state conditions, the V+max block at the physiological cycle length of 700 ms was 2.3% for GS967, 11.4% for mexiletine and 26.2% for quinidine. The respective offset time constants were 110 ± 6 ms, 456 ± 284 ms and 7.2 ± 0.9 s. These results reveal an inverse relationship between the offset time constant and the selectivity of INaL over INaP inhibition without any influence of the onset rate constant. It is concluded that the selective inhibition of INaL over INaP is related to the fast offset kinetics of the Na+ channel inhibitor.

5.
J Vis Exp ; (198)2023 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-37607075

RESUMO

Immunotherapy with antigen-specific antibodies or immune checkpoint inhibitors has revolutionized the therapy of breast cancer. Breast cancer cells expressing the epidermal growth factor receptor HER2 can be targeted by the anti-HER-2 antibody trastuzumab. Antibody-dependent cellular cytotoxicity (ADCC) is an important mechanism implicated in the antitumor action of HER-2. Trastuzumab bound to cancer cells can be recognized by the Fc receptors of ADCC effector cells (e.g., natural killer (NK) cells, macrophages, and granulocytes), triggering the cytotoxic activity of these immune cells leading to cancer cell death. We set out to develop an image-based assay for the quantification of ADCC to identify novel ADCC modulator compounds by high-content screening. In the assay, HER2 overexpressing JIMT-1 breast cancer cells are co-cultured with NK-92 cells in the presence of trastuzumab, and target cell death is quantified by automated microscopy and quantitative image analysis. Target cells are distinguished from effector cells based on their EGFP fluorescence. We show how compound libraries can be tested in the assay to identify ADCC modulator drugs. For this purpose, a compound library test plate was set up using randomly selected fine chemicals off the lab shelf. Three microtubule destabilizing compounds (colchicine, vincristine, podophyllotoxin) expected to interfere with NK cell migration and degranulation were also included in the test library. The test screen identified all three positive control compounds as hits proving the suitability of the method to identify ADCC-modifying drugs in a chemical library. With this assay, compound library screens can be performed to identify ADCC-enhancing compounds that could be used as adjuvant therapeutic agents for the treatment of patients receiving anticancer immunotherapies. In addition, the method can also be used to identify any undesirable ADCC-inhibiting side effects of therapeutic drugs taken by cancer patients for different indications.


Assuntos
Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama , Humanos , Feminino , Oncogenes , Trastuzumab/farmacologia , Neoplasias da Mama/tratamento farmacológico , Imunoterapia , Anticorpos
6.
Curr Issues Mol Biol ; 45(6): 4948-4969, 2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37367064

RESUMO

Adenosine plays an important role in modulating immune cell function, particularly T cells and myeloid cells, such as macrophages and dendritic cells. Cell surface adenosine A2A receptors (A2AR) regulate the production of pro-inflammatory cytokines and chemokines, as well as the proliferation, differentiation, and migration of immune cells. In the present study, we expanded the A2AR interactome and provided evidence for the interaction between the receptor and the Niemann-Pick type C intracellular cholesterol transporter 1 (NPC1) protein. The NPC1 protein was identified to interact with the C-terminal tail of A2AR in RAW 264.7 and IPMФ cells by two independent and parallel proteomic approaches. The interaction between the NPC1 protein and the full-length A2AR was further validated in HEK-293 cells that permanently express the receptor and RAW264.7 cells that endogenously express A2AR. A2AR activation reduces the expression of NPC1 mRNA and protein density in LPS-activated mouse IPMФ cells. Additionally, stimulation of A2AR negatively regulates the cell surface expression of NPC1 in LPS-stimulated macrophages. Furthermore, stimulation of A2AR also altered the density of lysosome-associated membrane protein 2 (LAMP2) and early endosome antigen 1 (EEA1), two endosomal markers associated with the NPC1 protein. Collectively, these results suggested a putative A2AR-mediated regulation of NPC1 protein function in macrophages, potentially relevant for the Niemann-Pick type C disease when mutations in NPC1 protein result in the accumulation of cholesterol and other lipids in lysosomes.

7.
Elife ; 122023 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-36815557

RESUMO

The health benefits of regular physical exercise are well known. Even so, there is increasing evidence that the exercise regimes of elite athletes can evoke cardiac arrhythmias including ventricular fibrillation and even sudden cardiac death (SCD). The mechanism of exercise-induced arrhythmia and SCD is poorly understood. Here, we show that chronic training in a canine model (12 sedentary and 12 trained dogs) that mimics the regime of elite athletes induces electrophysiological remodeling (measured by ECG, patch-clamp, and immunocytochemical techniques) resulting in increases of both the trigger and the substrate for ventricular arrhythmias. Thus, 4 months sustained training lengthened ventricular repolarization (QTc: 237.1±3.4 ms vs. 213.6±2.8 ms, n=12; APD90: 472.8±29.6 ms vs. 370.1±32.7 ms, n=29 vs. 25), decreased transient outward potassium current (6.4±0.5 pA/pF vs. 8.8±0.9 pA/pF at 50 mV, n=54 vs. 42), and increased the short-term variability of repolarization (29.5±3.8 ms vs. 17.5±4.0 ms, n=27 vs. 18). Left ventricular fibrosis and HCN4 protein expression were also enhanced. These changes were associated with enhanced ectopic activity (number of escape beats from 0/hr to 29.7±20.3/hr) in vivo and arrhythmia susceptibility (elicited ventricular fibrillation: 3 of 10 sedentary dogs vs. 6 of 10 trained dogs). Our findings provide in vivo, cellular electrophysiological and molecular biological evidence for the enhanced susceptibility to ventricular arrhythmia in an experimental large animal model of endurance training.


Assuntos
Arritmias Cardíacas , Fibrilação Ventricular , Cães , Animais , Morte Súbita Cardíaca , Ventrículos do Coração , Modelos Animais
8.
bioRxiv ; 2023 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-38234850

RESUMO

Computer models of the human ventricular cardiomyocyte action potential (AP) have reached a level of detail and maturity that has led to an increasing number of applications in the pharmaceutical sector. However, interfacing the models with experimental data can become a significant computational burden. To mitigate the computational burden, the present study introduces a neural network (NN) that emulates the AP for given maximum conductances of selected ion channels, pumps, and exchangers. Its applicability in pharmacological studies was tested on synthetic and experimental data. The NN emulator potentially enables massive speed-ups compared to regular simulations and the forward problem (find drugged AP for pharmacological parameters defined as scaling factors of control maximum conductances) on synthetic data could be solved with average root-mean-square errors (RMSE) of 0.47mV in normal APs and of 14.5mV in abnormal APs exhibiting early afterdepolarizations (72.5% of the emulated APs were alining with the abnormality, and the substantial majority of the remaining APs demonstrated pronounced proximity). This demonstrates not only very fast and mostly very accurate AP emulations but also the capability of accounting for discontinuities, a major advantage over existing emulation strategies. Furthermore, the inverse problem (find pharmacological parameters for control and drugged APs through optimization) on synthetic data could be solved with high accuracy shown by a maximum RMSE of 0.21 in the estimated pharmacological parameters. However, notable mismatches were observed between pharmacological parameters estimated from experimental data and distributions obtained from the Comprehensive in vitro Proarrhythmia Assay initiative. This reveals larger inaccuracies which can be attributed particularly to the fact that small tissue preparations were studied while the emulator was trained on single cardiomyocyte data. Overall, our study highlights the potential of NN emulators as powerful tool for an increased efficiency in future quantitative systems pharmacology studies.

9.
Pharmaceuticals (Basel) ; 15(12)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36559002

RESUMO

Long QT syndrome (LQTS) is an inherited cardiac rhythm disorder associated with increased incidence of cardiac arrhythmias and sudden death. LQTS type 5 (LQT5) is caused by dominant mutant variants of KCNE1, a regulatory subunit of the voltage-gated ion channels generating the cardiac potassium current IKs. While mutant LQT5 KCNE1 variants are known to inhibit IKs amplitudes in heterologous expression systems, cardiomyocytes from a transgenic rabbit LQT5 model displayed unchanged IKs amplitudes, pointing towards the critical role of additional factors in the development of the LQT5 phenotype in vivo. In this study, we demonstrate that KCNE3, a candidate regulatory subunit of IKs channels minimizes the inhibitory effects of LQT5 KCNE1 variants on IKs amplitudes, while current deactivation is accelerated. Such changes recapitulate IKs properties observed in LQT5 transgenic rabbits. We show that KCNE3 accomplishes this by displacing the KCNE1 subunit within the IKs ion channel complex, as evidenced by a dedicated biophysical assay. These findings depict KCNE3 as an integral part of the IKs channel complex that regulates IKs function in cardiomyocytes and modifies the development of the LQT5 phenotype.

10.
Biomedicines ; 10(10)2022 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-36289805

RESUMO

Acute pancreatitis (AP) is a potentially life-threatening gastrointestinal disease with a complex pathology including oxidative stress. Oxidative stress triggers oxidative DNA lesions such as formation of 7,8-dihydro-8-oxo-2'-oxoguanine (8-oxoG) and also causes DNA strand breaks. DNA breaks can activate the nuclear enzyme poly(ADP-ribose) polymerase 1 (PARP1) which contributes to AP pathology. 8-oxoG is recognized by 8-oxoG glycosylase 1 (OGG1) resulting in the removal of 8-oxoG from DNA as an initial step of base excision repair. Since OGG1 also possesses a DNA nicking activity, OGG1 activation may also trigger PARP1 activation. In the present study we investigated the role played by OGG1 in AP. We found that the OGG1 inhibitor compound TH5487 reduced edema formation, inflammatory cell migration and necrosis in a cerulein-induced AP model in mice. Moreover, TH5487 caused 8-oxoG accumulation and reduced tissue poly(ADP-ribose) levels. Consistent with the indirect PARP inhibitory effect, TH5487 shifted necrotic cell death (LDH release and Sytox green uptake) towards apoptosis (caspase activity) in isolated pancreatic acinar cells. In the in vivo AP model, TH5487 treatment suppressed the expression of various cytokine and chemokine mRNAs such as those of TNF, IL-1ß, IL1ra, IL6, IL16, IL23, CSF, CCL2, CCL4, CCL12, IL10 and TREM as measured with a cytokine array and verified by RT-qPCR. As a potential mechanism underlying the transcriptional inhibitory effect of the OGG1 inhibitor we showed that while 8-oxoG accumulation in the DNA facilitates NF-κB binding to its consensus sequence, when OGG1 is inhibited, target site occupancy of NF-κB is impaired. In summary, OGG1 inhibition provides protection from tissue injury in AP and these effects are likely due to interference with the PARP1 and NF-κB activation pathways.

11.
Biomedicines ; 10(6)2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35740393

RESUMO

Acute pancreatitis (AP) poses a worldwide challenge due to the growing incidence and its potentially life-threatening course and complications. Specific targeted therapies are not available, prompting the identification of new pathways and novel therapeutic approaches. Flavonoids comprise several groups of biologically active compounds with wide-ranging effects. The flavone compound, tricetin (TCT), has not yet been investigated in detail but sporadic reports indicate diverse biological activities. In the current study, we evaluated the potential protective effects of TCT in AP. TCT (30 µM) protected isolated primary murine acinar cells from the cytotoxic effects of cerulein, a cholecystokinin analog peptide. The protective effects of TCT were observed in a general viability assay (calcein ester hydrolysis), in an apoptosis assay (caspase activity), and in necrosis assays (propidium iodide uptake and lactate dehydrogenase release). The effects of TCT were not related to its potential antioxidant effects, as TCT did not protect against H2O2-induced acinar cell death despite possessing radical scavenging activity. Cerulein-induced expression of IL1ß, IL6, and matrix metalloproteinase 2 and activation of nuclear factor-κB (NFκB) were reduced by 30 µM TCT. In vivo experiments confirmed the protective effect of TCT in a mouse model of cerulein-induced AP. TCT suppressed edema formation and apoptosis in the pancreas and reduced lipase and amylase levels in the serum. Moreover, TCT inhibited interleukin-1ß (IL1ß), interleukin-6 (IL6), and tumor necrosis factor-α (TNFα) expression in the pancreas and reduced the activation of the oxidative DNA damage sensor enzyme poly(ADP-ribose) polymerase-1 (PARP-1). Our data indicate that TCT can be a potential treatment option for AP.

12.
Can J Physiol Pharmacol ; 100(9): 880-889, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35442802

RESUMO

Even though rodents are accessible model animals, their electrophysiological properties are deeply different from those of humans, making the translation of rat studies to humans rather difficult. We compared the mechanisms of ventricular repolarization in various animal models to those of humans by measuring cardiac ventricular action potentials from ventricular papillary muscle preparations using conventional microelectrodes and applying selective inhibitors of various potassium transmembrane ion currents. Inhibition of the IK1 current (10 µmol/L barium chloride) significantly prolonged rat ventricular repolarization, but only slightly prolonged it in dogs, and did not affect it in humans. On the contrary, IKr inhibition (50 nmol/L dofetilide) significantly prolonged repolarization in humans, rabbits, and dogs, but not in rats. Inhibition of the IKur current (1 µmol/L XEN-D0101) only prolonged rat ventricular repolarization and had no effect in humans or dogs. Inhibition of the IKs (500 nmol/L HMR-1556) and Ito currents (100 µmol/L chromanol-293B) elicited similar effects in all investigated species. We conclude that dog ventricular preparations have the strongest translational value and rat ventricular preparations have the weakest translational value in cardiac electrophysiological experiments.


Assuntos
Canais de Potássio , Potássio , Potenciais de Ação , Animais , Cães , Coração/fisiologia , Ventrículos do Coração , Humanos , Miocárdio/metabolismo , Potássio/metabolismo , Coelhos , Ratos
13.
J Biol Chem ; 298(5): 101888, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35367412

RESUMO

Adenosine A2A receptor (A2AR)-dependent signaling in macrophages plays a key role in the regulation of inflammation. However, the processes regulating A2AR targeting to the cell surface and degradation in macrophages are incompletely understood. For example, the C-terminal domain of the A2AR and proteins interacting with it are known to regulate receptor recycling, although it is unclear what role potential A2AR-interacting partners have in macrophages. Here, we aimed to identify A2AR-interacting partners in macrophages that may effect receptor trafficking and activity. To this end, we performed a yeast two-hybrid screen using the C-terminal tail of A2AR as the "bait" and a macrophage expression library as the "prey." We found that the lysosomal protease cathepsin D (CtsD) was a robust hit. The A2AR-CtsD interaction was validated in vitro and in cellular models, including RAW 264.7 and mouse peritoneal macrophage (IPMΦ) cells. We also demonstrated that the A2AR is a substrate of CtsD and that the blockade of CtsD activity increases the density and cell surface targeting of A2AR in macrophages. Conversely, we demonstrate that A2AR activation prompts the maturation and enzymatic activity of CtsD in macrophages. In summary, we conclude that CtsD is a novel A2AR-interacting partner and thus describe molecular and functional interplay that may be crucial for adenosine-mediated macrophage regulation in inflammatory processes.


Assuntos
Adenosina , Catepsina D/metabolismo , Receptor A2A de Adenosina , Adenosina/metabolismo , Animais , Proteínas de Transporte/metabolismo , Catepsina D/genética , Macrófagos/metabolismo , Camundongos , Receptor A2A de Adenosina/genética , Receptor A2A de Adenosina/metabolismo , Transdução de Sinais
14.
Br J Pharmacol ; 179(13): 3382-3402, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35106755

RESUMO

BACKGROUND AND PURPOSE: The aim of the present study was to study the antiarrhythmic effects and cellular mechanisms of desethylamiodarone (DEA), the main metabolite of amiodarone (AMIO), following acute and chronic 4-week oral treatments (25-50 mg·kg-1 ·day-1 ). EXPERIMENTAL APPROACH: The antiarrhythmic effects of acute iv. (10 mg·kg-1 ) and chronic oral (4 weeks, 25 mg·kg-1 ·day-1 ) administration of DEA were assessed in carbachol and tachypacing-induced dog atrial fibrillation models. Action potentials were recorded from atrial and right ventricular tissue following acute (10 µM) and chronic (p.o. 4 weeks, 50 mg·kg-1 ·day-1 ) DEA application using the conventional microelectrode technique. Ionic currents were measured by the whole cell configuration of the patch clamp technique in isolated left ventricular myocytes. Pharmacokinetic studies were performed following a single intravenous dose (25 mg·kg-1 ) of AMIO and DEA intravenously and orally. In chronic (91-day) toxicological investigations, DEA and AMIO were administered in the oral dose of 25 mg·kg-1 ·day-1 ). KEY RESULTS: DEA exerted marked antiarrhythmic effects in both canine atrial fibrillation models. Both acute and chronic DEA administration prolonged action potential duration in atrial and ventricular muscle without any changes detected in Purkinje fibres. DEA decreased the amplitude of several outward potassium currents such as IKr , IKs , IK1 , Ito , and IKACh , while the ICaL and late INa inward currents were also significantly depressed. Better drug bioavailability and higher volume of distribution for DEA were observed compared to AMIO. No neutropenia and less severe pulmonary fibrosis was found following DEA compared to that of AMIO administration. CONCLUSION AND IMPLICATIONS: Chronic DEA treatment in animal experiments has marked antiarrhythmic and electrophysiological effects with better pharmacokinetics and lower toxicity than its parent compound. These results suggest that the active metabolite, DEA, should be considered for clinical trials as a possible new, more favourable option for the treatment of cardiac arrhythmias including atrial fibrillation.


Assuntos
Amiodarona , Fibrilação Atrial , Potenciais de Ação , Amiodarona/análogos & derivados , Amiodarona/farmacologia , Animais , Antiarrítmicos/farmacologia , Fibrilação Atrial/tratamento farmacológico , Fibrilação Atrial/metabolismo , Cães , Átrios do Coração , Miócitos Cardíacos
15.
Cancer Immunol Immunother ; 71(9): 2151-2168, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35066605

RESUMO

Despite recent advances in the development of novel personalized therapies, breast cancer continues to challenge physicians with resistance to various advanced therapies. The anticancer action of the anti-HER2 antibody, trastuzumab, involves antibody-dependent cell-mediated cytotoxicity (ADCC) by natural killer (NK) cells. Here, we report a repurposing screen of 774 clinically used compounds on NK-cell + trastuzumab-induced killing of JIMT-1 breast cancer cells. Using a calcein-based high-content screening (HCS) assay for the image-based quantitation of ADCC that we have developed and optimized for this purpose, we have found that the multitargeted tyrosine kinase inhibitor sunitinib inhibits ADCC in this model. The cytoprotective effect of sunitinib was also confirmed with two other assays (lactate dehydrogenase release, and electric cell substrate impedance sensing, ECIS). The drug suppressed NK cell activation as indicated by reduced granzyme B deposition on to the target cells and inhibition of interferon-γ production by the NK cells. Moreover, sunitinib induced downregulation of HER2 on the target cells' surface, changed the morphology and increased adherence of the target cells. Moreover, sunitinib also triggered the autophagy pathway (speckled LC3b) as an additional potential underlying mechanism of the cytoprotective effect of the drug. Sunitinib-induced ADCC resistance has been confirmed in a 3D tumor model revealing the prevention of apoptotic cell death (Annexin V staining) in JIMT-1 spheroids co-incubated with NK cells and trastuzumab. In summary, our HCS assay may be suitable for the facile identification of ADCC boosting compounds. Our data urge caution concerning potential combinations of ADCC-based immunotherapies and sunitinib.


Assuntos
Neoplasias da Mama , Citotoxicidade Celular Dependente de Anticorpos , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Inibidores de Proteínas Quinases/uso terapêutico , Receptor ErbB-2/metabolismo , Sunitinibe/farmacologia , Sunitinibe/uso terapêutico , Trastuzumab/farmacologia
16.
Pharmaceuticals (Basel) ; 14(11)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34832924

RESUMO

Enhancement of the late sodium current (INaL) increases arrhythmia propensity in the heart, whereas suppression of the current is antiarrhythmic. In the present study, we investigated INaL in canine ventricular cardiomyocytes under action potential voltage-clamp conditions using the selective Na+ channel inhibitors GS967 and tetrodotoxin. Both 1 µM GS967 and 10 µM tetrodotoxin dissected largely similar inward currents. The amplitude and integral of the GS967-sensitive current was significantly smaller after the reduction of intracellular Ca2+ concentration ([Ca2+]i) either by superfusion of the cells with 1 µM nisoldipine or by intracellular application of 10 mM BAPTA. Inhibiting calcium/calmodulin-dependent protein kinase II (CaMKII) by KN-93 or the autocamtide-2-related inhibitor peptide similarly reduced the amplitude and integral of INaL. Action potential duration was shortened in a reverse rate-dependent manner and the plateau potential was depressed by GS967. This GS967-induced depression of plateau was reduced by pretreatment of the cells with BAPTA-AM. We conclude that (1) INaL depends on the magnitude of [Ca2+]i in canine ventricular cells, (2) this [Ca2+]i-dependence of INaL is mediated by the Ca2+-dependent activation of CaMKII, and (3) INaL is augmented by the baseline CaMKII activity.

17.
Int J Mol Sci ; 22(16)2021 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-34445574

RESUMO

Osteosarcoma is a frequent and extremely aggressive type of pediatric cancer. New therapeutic approaches are needed to improve the overall survival of osteosarcoma patients. Our previous results suggest that NMNAT1, a key enzyme in nuclear NAD+ synthesis, facilitates the survival of cisplatin-treated osteosarcoma cells. A high-throughput cytotoxicity screening was performed to identify novel pathways or compounds linked to the cancer-promoting role of NMNAT1. Nine compounds caused higher toxicity in the NMNAT1 KO U2OS cells compared to their wild type counterparts, and actinomycin D (ActD) was the most potent. ActD-treatment of NMNAT1 KO cells increased caspase activity and secondary necrosis. The reduced NAD+ content in NMNAT1 KO cells was further decreased by ActD, which partially inhibited NAD+-dependent enzymes, including the DNA nick sensor enzyme PARP1 and the NAD+-dependent deacetylase SIRT1. Impaired PARP1 activity increased DNA damage in ActD-treated NMNAT1 knockout cells, while SIRT1 impairment increased acetylation of the p53 protein, causing the upregulation of pro-apoptotic proteins (NOXA, BAX). Proliferation was decreased through both PARP- and SIRT-dependent pathways. On the one hand, PARP inhibitors sensitized wild type but not NMNAT1 KO cells to ActD-induced anti-clonogenic effects; on the other hand, over-acetylated p53 induced the expression of the anti-proliferative p21 protein leading to cell cycle arrest. Based on our results, NMNAT1 acts as a survival factor in ActD-treated osteosarcoma cells. By inhibiting both PARP1- and SIRT1-dependent cellular pathways, NMNAT1 inhibition can be a promising new tool in osteosarcoma chemotherapy.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Ósseas/prevenção & controle , Dactinomicina/farmacologia , Regulação Neoplásica da Expressão Gênica , Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Osteossarcoma/prevenção & controle , Antibióticos Antineoplásicos/farmacologia , Apoptose , Biomarcadores Tumorais/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Proliferação de Células , Humanos , Nicotinamida-Nucleotídeo Adenililtransferase/antagonistas & inibidores , Nicotinamida-Nucleotídeo Adenililtransferase/genética , Osteossarcoma/metabolismo , Osteossarcoma/patologia , Poli(ADP-Ribose) Polimerase-1/genética , Poli(ADP-Ribose) Polimerase-1/metabolismo , Sirtuína 1/genética , Sirtuína 1/metabolismo , Células Tumorais Cultivadas
18.
Sci Rep ; 11(1): 9565, 2021 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-33953276

RESUMO

Enhancement of the late Na+ current (INaL) increases arrhythmia propensity in the heart, while suppression of the current is antiarrhythmic. GS967 is an agent considered as a selective blocker of INaL. In the present study, effects of GS967 on INaL and action potential (AP) morphology were studied in canine ventricular myocytes by using conventional voltage clamp, action potential voltage clamp and sharp microelectrode techniques. The effects of GS967 (1 µM) were compared to those of the class I/B antiarrhythmic compound mexiletine (40 µM). Under conventional voltage clamp conditions, INaL was significantly suppressed by GS967 and mexiletine, causing 80.4 ± 2.2% and 59.1 ± 1.8% reduction of the densities of INaL measured at 50 ms of depolarization, and 79.0 ± 3.1% and 63.3 ± 2.7% reduction of the corresponding current integrals, respectively. Both drugs shifted the voltage dependence of the steady-state inactivation curve of INaL towards negative potentials. GS967 and mexiletine dissected inward INaL profiles under AP voltage clamp conditions having densities, measured at 50% of AP duration (APD), of -0.37 ± 0.07 and -0.28 ± 0.03 A/F, and current integrals of -56.7 ± 9.1 and -46.6 ± 5.5 mC/F, respectively. Drug effects on peak Na+ current (INaP) were assessed by recording the maximum velocity of AP upstroke (V+max) in multicellular preparations. The offset time constant was threefold faster for GS967 than mexiletine (110 ms versus 289 ms), while the onset of the rate-dependent block was slower in the case of GS967. Effects on beat-to-beat variability of APD was studied in isolated myocytes. Beat-to-beat variability was significantly decreased by both GS967 and mexiletine (reduction of 42.1 ± 6.5% and 24.6 ± 12.8%, respectively) while their shortening effect on APD was comparable. It is concluded that the electrophysiological effects of GS967 are similar to those of mexiletine, but with somewhat faster offset kinetics of V+max block. However, since GS967 depressed V+max and INaL at the same concentration, the current view that GS967 represents a new class of drugs that selectively block INaL has to be questioned and it is suggested that GS967 should be classified as a class I/B antiarrhythmic agent.


Assuntos
Potenciais de Ação/efeitos dos fármacos , Antiarrítmicos/farmacologia , Coração/efeitos dos fármacos , Mexiletina/farmacologia , Piridinas/farmacologia , Triazóis/farmacologia , Animais , Cães , Feminino , Frequência Cardíaca/efeitos dos fármacos , Masculino , Miocárdio , Miócitos Cardíacos/efeitos dos fármacos
19.
Arch Toxicol ; 95(7): 2497-2505, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34031697

RESUMO

Cannabis use is associated with known cardiovascular side effects such as cardiac arrhythmias or even sudden cardiac death. The mechanisms behind these adverse effects are unknown. The aim of the present work was to study the cellular cardiac electrophysiological effects of cannabidiol (CBD) on action potentials and several transmembrane potassium currents, such as the rapid (IKr) and slow (IKs) delayed rectifier, the transient outward (Ito) and inward rectifier (IK1) potassium currents in rabbit and dog cardiac preparations. CBD increased action potential duration (APD) significantly in both rabbit (from 211.7 ± 11.2. to 224.6 ± 11.4 ms, n = 8) and dog (from 215.2 ± 9.0 to 231.7 ± 4.7 ms, n = 6) ventricular papillary muscle at 5 µM concentration. CBD decreased IKr, IKs and Ito (only in dog) significantly with corresponding estimated EC50 values of 4.9, 3.1 and 5 µM, respectively, without changing IK1. Although the EC50 value of CBD was found to be higher than literary Cmax values after CBD smoking and oral intake, our results raise the possibility that potassium channel inhibition by lengthening cardiac repolarization might have a role in the possible proarrhythmic side effects of cannabinoids in situations where CBD metabolism and/or the repolarization reserve is impaired.


Assuntos
Canabidiol , Potássio , Potenciais de Ação , Animais , Canabidiol/toxicidade , Cães , Ventrículos do Coração , Músculos Papilares/metabolismo , Potássio/metabolismo , Coelhos
20.
FEBS J ; 288(22): 6476-6491, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33899329

RESUMO

Necroptosis is a regulated necrotic-like cell death modality which has come into the focus of attention since it is known to contribute to the pathogenesis of many inflammatory and degenerative diseases as well as to tumor regulation. Based on current data, necroptosis serves as a backup mechanism when death receptor-induced apoptosis is inhibited or absent. However, the necroptotic role of the proteins involved in mitochondrial apoptosis has not been investigated. Here, we demonstrated that the stimulation of several death and pattern recognition receptors induced necroptosis under caspase-compromised conditions in wild-type, but not in caspase-9-negative human Jurkat and murine MEF cells. Cerulein-induced pancreatitis was significantly reduced in mice with acinar cell-restricted caspase-9 gene knockout. The absence of caspase-9 led to impaired association of receptor-interacting serine/threonine-protein kinase 1 (RIPK1) and RIPK3 and resulted in decreased phosphorylation of RIP kinases, but the overexpression of RIPK1 or RIPK3 rescued the effect of caspase-9 deficiency. Inhibition of either Aurora kinase A (AURKA) or its known substrate, glycogen synthase kinase 3ß (GSK3ß) restored necroptosis sensitivity of caspase-9-deficient cells, indicating an interplay between caspase-9 and AURKA-mediated pathways to regulate necroptosis. Our findings suggest that caspase-9 acts as a newly identified regulator of necroptosis, and thus, caspase-9 provides a promising therapeutic target to manipulate the immunological outcome of cell death.


Assuntos
Caspase 9/metabolismo , Necrose/metabolismo , Animais , Morte Celular , Linhagem Celular , Modelos Animais de Doenças , Humanos , Camundongos , Camundongos Endogâmicos , Pancreatite/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...